Manifold Statistics for Essential Matrices

نویسندگان

  • Gijs Dubbelman
  • Leo Dorst
  • Henk Pijls
چکیده

Riemannian geometry allows for the generalization of statistics designed for Euclidean vector spaces to Riemannian manifolds. It has recently gained popularity within computer vision as many relevant parameter spaces have such a Riemannian manifold structure. Approaches which exploit this have been shown to exhibit improved efficiency and accuracy. The Riemannian logarithmic and exponential mappings are at the core of these approaches. In this contribution we review recently proposed Riemannian mappings for essential matrices and prove that they lead to sub-optimal manifold statistics. We introduce correct Riemannian mappings by utilizing a multiple-geodesic approach and show experimentally that they provide optimal statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Space of Essential Matrices as a Riemannian Quotient Manifold

The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views or do not fully take into account the geometric peculia...

متن کامل

Geodesic Monte Carlo on Embedded Manifolds

Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering me...

متن کامل

Sampling From A Manifold

A variety of inferential tasks require drawing samples from a probability distribution on a manifold. This occurs in sampling from the posterior distribution on constrained parameter spaces (eg covariance matrices), in testing goodness of fit for exponential families conditional on sufficient statistics (eg the sum and product of the observations in a Gamma family), and in generating data to te...

متن کامل

Essential Matrix Estimation via Newton-type Methods

In this paper camera parameters are assumed to be known and a novel approach for essential matrix estimation is presented. We estimate the essential matrix from point correspondences between a stereo image pair. The technical approach we take is a generalization of the classical Newton method. It is well-known that the set of essential matrices forms a smooth manifold. Moreover, it is quite nat...

متن کامل

Geometric Optimization in Machine Learning

Machine learning models often rely on sparsity, low-rank, orthogonality, correlation, or graphical structure. The structure of interest in this chapter is geometric, specifically the manifold of positive definite (PD) matrices. Though these matrices recur throughout the applied sciences, our focus is on more recent developments in machine learning and optimization. In particular, we study (i) m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012