Manifold Statistics for Essential Matrices
نویسندگان
چکیده
Riemannian geometry allows for the generalization of statistics designed for Euclidean vector spaces to Riemannian manifolds. It has recently gained popularity within computer vision as many relevant parameter spaces have such a Riemannian manifold structure. Approaches which exploit this have been shown to exhibit improved efficiency and accuracy. The Riemannian logarithmic and exponential mappings are at the core of these approaches. In this contribution we review recently proposed Riemannian mappings for essential matrices and prove that they lead to sub-optimal manifold statistics. We introduce correct Riemannian mappings by utilizing a multiple-geodesic approach and show experimentally that they provide optimal statistics.
منابع مشابه
The Space of Essential Matrices as a Riemannian Quotient Manifold
The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views or do not fully take into account the geometric peculia...
متن کاملGeodesic Monte Carlo on Embedded Manifolds
Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering me...
متن کاملSampling From A Manifold
A variety of inferential tasks require drawing samples from a probability distribution on a manifold. This occurs in sampling from the posterior distribution on constrained parameter spaces (eg covariance matrices), in testing goodness of fit for exponential families conditional on sufficient statistics (eg the sum and product of the observations in a Gamma family), and in generating data to te...
متن کاملEssential Matrix Estimation via Newton-type Methods
In this paper camera parameters are assumed to be known and a novel approach for essential matrix estimation is presented. We estimate the essential matrix from point correspondences between a stereo image pair. The technical approach we take is a generalization of the classical Newton method. It is well-known that the set of essential matrices forms a smooth manifold. Moreover, it is quite nat...
متن کاملGeometric Optimization in Machine Learning
Machine learning models often rely on sparsity, low-rank, orthogonality, correlation, or graphical structure. The structure of interest in this chapter is geometric, specifically the manifold of positive definite (PD) matrices. Though these matrices recur throughout the applied sciences, our focus is on more recent developments in machine learning and optimization. In particular, we study (i) m...
متن کامل